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Abstract: The H1R antagonist astemizole was identified as a soma-
tostatin 5 (SST5) receptor antagonist by a comparative sequence analysis
of the consensus drug binding pocket of GPCRs. Subsequently, a
similarity analysis of GPCR affinity profiles of astemizole versus a set
of in-house GPCR-biased combinatorial libraries revealed new chemical
entry points that led to a second lead series with nanomolar binding
affinity.

Approaches labeled with the term chemogenomics system-
atize hit discovery by linking protein families (GPCRs,a kinases,
ligand-gated ion channels, proteases, nuclear hormone receptors)
to small molecule ligands via annotation schemes derived from
common recognition motifs or affinity profiles. At Roche, we
view chemogenomics as a multidimensional expansion of the
medicinal chemistry similarity principle, where chemical simi-
larity is augmented by the additional dimensions of sequence
as well as biological similarity. Here we highlight the successful
integration of this new paradigm into the lead generation process
with the identification of a structurally diverse hit series for the
somatostatin 5 receptor starting from the H1R antagonist
astemizole.

The term “chemogenomics” appeared first in 2000 in a Vertex
press release,1 where it was described as an approach to “rapidly
and simultaneously design multiple lead classes of drugs directed
at protein targets in gene families”. In a follow-up landmark
publication in 2001, chemogenomics was defined as “the
discovery and description of all possible drugs to all possible
drug targets”.2 In 2001, there was only one further publication
by Jacoby et al. that mentioned chemogenomics in the title.3

Since then, the number of chemogenomics-related publications
has been rising steadily, and related terms such as chemical

genetics, chemical genomics, and chemical biology (by former
Aventis) appeared and circulated with various definitions in the
scientific community. Chemogenomics has become so popular
in the pharmaceutical industry that two books have been devoted
to this topic.4,5

Despite the popularity of chemogenomics, there is an obvious
mismatch between the number of chemogenomics-related
publications claiming an efficiency boost in drug discovery and
the description of real applications. We are aware of very few
publications dealing with the application of chemogenomics,
such as a prospective study by Telik6 validating the technology,
another one from the same company disclosing a hit finding
campaign for a drug discovery project,7 and two recent
publications from 7TM Pharma.8,9 Therefore, we see a need to
demonstrate to the scientific community how chemogenomics
has been implemented in Lead Generation at Roche to support
GPCR hit finding in bridging the gap between project initiation
and data delivery from a high-throughput screening (HTS)
campaign.

In the preceding publication, we described the discovery of
the first nonpeptidic, small molecule, highly selective soma-
tostatin (SST) 5 receptor antagonists by a chemogenomics search
strategy.10 This approach is based on identifying the most similar
GPCRs with respect to the consensus drug binding site in the
transmembrane region and testing the respective ligands against
the target receptor. Among several biogenic amine receptor–li-
gands, the H1 receptor antagonist astemizole was chosen as a
chemical starting point and transformed into a potent hSST5R
antagonist, with nanomolar binding affinity being devoid of the
original H1R activity. To minimize the risk of failure associated
with optimizing a single hit series, we simultaneously initiated
the search for a backup series. In this publication, we report on
a second, novel series of SST5 receptor antagonists with the
general structure 1, which were discovered in the pre-HTS phase
by similarity searches based on GPCR affinity fingerprints.

Both Weinstein et al.11 and Kauvar et al.12 pioneered the
concept of affinity fingerprints, that is, the measurement of
binding affinities toward a reference panel of proteins. The
biological profiles are used as similarity descriptors for the
identification of lead structures13,14 and for establishing quantita-
tive relationships between chemical structures and biological
activity spectra.15–19 Within the context of the GPCR chemoge-
nomics initiative at Roche, approximately 5000 compounds
containing privileged structure motifs from GPCR ligands were
synthesized by parallel chemistry and submitted to Cerep20 for
measuring binding affinities against a panel of 15 GPCRs. The
rationale for selecting this panel was founded on a principal
component analysis of the ligand binding data of the Cerep
BioPrint21 database versus a group of 30 different GPCRs. A
subset of 15 GPCRs representing the major portion of the
information content of the original matrix was selected (M2,
R2, �1, D1, H1, H2, 5-HT1A, 5-HT4e, 5-HT2A, MC4, Delta,
Kappa, NK1, A1, CB1) for further profiling. Percent inhibition
data were measured at 10, 1, and 0.1 µM concentrations, from
which Ki values were estimated by applying a set of rules (to
be described in a forthcoming publication). The relationship
between structural similarity and affinity fingerprint diversity
was systematically analyzed by neighborhood plots,22 where the
Tanimoto coefficient (Daylight fingerprints23) of a compound
pair was plotted against the Euclidean distance of the corre-
sponding affinity profiles.
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As highlighted in Figure 1, the upper left portion of the graph
contains similar chemical structures with similar affinity fin-
gerprints, whereras the lower right corner is populated by diverse
compound pairs with greatly differing biological profiles. The
triangular shape of the plot is indicative of the similarity
principle, that is, structurally related ligands imply similar
bioactivity profiles and affinity fingerprint diversity increases
with structural dissimilarity.

However, the plot in Figure 2 also illustrates that there is a
considerable proportion of chemically diverse structures with a
similar bioactivity profile.

Thus, as already noted by others, the reverse of the similarity
principle,25 that is, similar biological properties determine
structural similarity, is not valid.12,24 Affinity fingerprints are a
biological similarity metric that is not correlated with topological
structural descriptors, and structurally diverse molecules may
display similar affinity fingerprints. This observation is highly
relevant for a typical Lead Generation scenario when additional
but diverse chemical entry points are needed for a given target.
From the above analysis, the following strategy for GPCR hit
finding was defined which is based on detecting biologically
similar, but structurally diverse molecules. A seed molecule,
for which alternative structures are sought, is profiled against a
reference panel of GPCRs. The target receptor of interest is not
included in this panel. The affinity profiles of a previously
profiled compound library are sorted by similarity to the affinity

fingerprint of the query molecule. Among those biologically
most similar compounds hits should be contained, which are
structurally diverse compared to the original seed structure. The
rationale is that compounds with similar affinity profiles,
regardless of their molecular topology, should exploit similar
conserved 3D recognition motifs, and therefore, an enrichment
of topologically diverse hit structures toward the target of interest
is expected. This strategy was applied for identifying an
additional hit class in the SST5 project.

As described previously, the H1R antagonist astemizole was
identified as hSST5R antagonist with micromolar binding
affinity. Because the affinity fingerprint of astemizole was also
contained in the Cerep BioPrint compound collection, the
structures in the database were resorted with respect to the
Euclidean distances of their affinity fingerprints to astemizole
(Figure 3). The results of the SST5R radioligand binding assay
revealed that the top 3.8% of the resorted compound list
(applying an arbitrary cutoff of 4.0 for the Euclidean distance
of affinity profiles) yielded a hit rate of 24% (36 hits out of
147 compounds), covering several different chemical classes.
The boxed portion of the heatmap shows two representative
hits (Figure 3), which are chemically diverse with respect to
astemizole but which have similar GPCR affinity profiles.

Both compounds 1 and 2 have pairwise Daylight Tanimoto
coefficients21 with astemizole of 0.34 and 0.39, respectively.
Because the usually applied cutoff value for 2D similarity
searches is >0.8, these hits would have not been identified in
a virtual screening campaign. This result clearly demonstrates
that a chemogenomics search strategy based on affinity finger-
print similarity is able to retrieve structurally diverse hit classes.

Figure 1. Neighborhood plot analyzing the relationship between
chemical and biological similarity.

Figure 2. This neighbourhood plot illustrates the basis for a hit-finding
strategy that aims at identifying topologically different, but biologically
similar, chemical entry points for GPCR targets. The region encompass-
ing biologically similar, but structurally diverse, compound pairs is
highlighted with a dashed box. Structural similarity is defined by the
Tanimoto coefficient of Daylight fingerprints, biological similarity via
the Euclidean distance of the affinity profiles.

Figure 3. From astemizole to structurally diverse antagonists for the
hSST5 receptor. The heatmap color coding reads as follows: red, <0.5
µM; green, >10 µM; black, <10 and >0.5 µM.
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From those hits, the spiro compound 3 (hSST5R Ki ) 1.1
µM) was chosen as a starting point for further optimization.
Interestingly, a subsequent HTS of 600 k compounds yielded
only 302 validated hits displaying more than 30% binding at a
3 µM concentration. In addition to the two hit classes derived
from the similarity fingerprint analysis, another two hit series
were identified from the HTS screen, which, however, had to
be terminated in the subsequent optimization phase. Therefore,
the chemogenomics strategy compared very favorably to the
classical HTS approach.

The spiroketopiperidine 3 was resistant to optimization,
however, “opening” of the spiro-group to 4-benzamidopiperidine
4 (Figure 4) afforded a much broader SAR and also showed an
improved affinity for hSST5R (Ki 0.12 µM). The readily
accessible 4-amino-piperidine scaffold allowed for a very rapid
optimization of this compound class. Although further potency
increases could be achieved by increasing the lipophilicity of
benzamide 5, the 5-methylnicotinamide 6 was preferred, as it
offered greater potential to present a physicochemically more
balanced molecule. The similarity to the emerging benzoxazole
series communicated earlier was confirmed when, once again,
a benzyl headgroup containing a meta-ethoxy substituent showed
excellent potency (7, Ki ) 15 nM). This compound shows good
selectivity over the other SST receptors, however, a screen
against a number of GPCRs demonstrated that there was still
affinity for H1R (Ki ) 0.27 µM). In addition to the strategy
employed in the benzoxazole series, this undesirable cross-
activity can be easily removed by the introduction of a polar
group in the 3-position of the benzamide 8. Thus, the series
shows good potential for further optimization, where the
remaining issue of hERG binding (hERG IC50 ) 1.3 µM) needs
to be addressed.

In conclusion, the comparison of affinity fingerprints of seed
structures with a reference library of GPCR chemotypes, which
have been profiled against the same target panel, has delivered
a novel hit class of hSST5 receptor antagonists. From a broader
perspective, this chemogenomics approach can be viewed as
the successful application of a multidimensional similarity
paradigm, where protein sequences and molecular structures are
grouped with appropriate similarity metrics and both target and
ligand clusters are linked together by ligand-target annotations,
that is, via affinity fingerprints. However, a successful imple-

mentation of this strategy into the lead generation process
requires a substantial investment in infrastructure to compile
biological data, an enrichment of the corporate compound
depository with target-specific chemotypes and setup of a data
warehouse to link ligand with target information. With this
example it has been demonstrated that chemogenomics is able
to play a pivotal role in finding hits for novel GPCR targets
without known small molecule ligands.
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